A Pilot Genome-Scale Profiling of DNA Methylation in Sporadic Pituitary Macroadenomas: Association with Tumor Invasion and Histopathological Subtype
نویسندگان
چکیده
Pituitary adenomas (PAs) are neoplasms that may cause a variety of neurological and endocrine effects. Although known causal contributors include heredity, hormonal influence and somatic mutations, the pathophysiologic mechanisms driving tumorigenesis and invasion of sporadic PAs remain unknown. We hypothesized that alterations in DNA methylation are associated with PA invasion and histopathology subtype, and that genome-scale methylation analysis may complement current classification methods for sporadic PAs. Twenty-four surgically-resected sporadic PAs with varying histopathological subtypes were assigned dichotomized Knosp invasion scores and examined using genome-wide DNA methylation profiling and RNA sequencing. PA samples clustered into subgroups according to functional status. Compared with hormonally-active PAs, nonfunctional PAs exhibited global DNA hypermethylation (mean beta-value 0.47 versus 0.42, P = 0.005); the most significant site of differential DNA methylation was within the promoter region of the potassium voltage-gated channel KCNAB2 (FDR = 5.11×10-10). Pathway analysis of promoter-associated CpGs showed that nonfunctional PAs are potentially associated with the ion-channel activity signal pathway. DNA hypermethylation tended to be negatively correlated with gene expression. DNA methylation analysis may be used to identify candidate genes involved in PA function and may potentially complement current standard immunostaining classification in sporadic PAs. DNA hypermethylation of KCNAB2 and downstream ion-channel activity signal pathways may contribute to the endocrine-inactive status of nonfunctional PAs.
منابع مشابه
E-cadherin Promoter Methylation Comparison and Correlation with the Pathological Features of the Squamous Cell Carcinoma of Esophagus in the High Risk Region
E-cadherin is among tumor suppressor genes which mostly subjects to the down-regulation in squamous cell carcinoma of esophagus (SCCE). The gene is tightly associated with the tumor invasion and metastasis in multiple human cancers, especially SCCE. CpG islands’ methylation in the promoter region of E-cadherin is among the mechanisms that have been suggested for the E-cadherin silencing, howeve...
متن کاملThe Role of Epigenetic Modification in Tumorigenesis and Progression of Pituitary Adenomas: A Systematic Review of the Literature
BACKGROUND Pituitary adenomas (PAs) are commonly occurring neoplasms with diverse endocrine and neurological effects. Although somatic gene mutations are uncommon in sporadic PAs, recent studies lend support to epigenetic modification as a potential cause of tumorigenesis and tumor progression. METHODS A systematic literature review of the PubMed and Google Scholar databases was conducted to ...
متن کاملPredicting CpG Islands and DNA Methlation in the Cow Genome Using DNA Microarray Meta-Analysis and Genome Wide Scanning
DNA methylation is a type of epigenetic changes that directly affects DNA. In mammals, DNA methylation is essential for fetal development and stem cell differentiation and this phenomenon essentially occurs within the CpG islands. In this study, two methods were used to study the DNA methylation profile of cow genome. In the first method, the DNA methylation profile of the differentially expres...
متن کاملMethylation Status of SOX17 and RUNX3 Genes in Acute Leukemia
Background: Several studies have examined the presence of DNA methylation of CpG islands in leukemia. Methylation of SOX17 and RUNX3 genes may play a role in leukemogenesis through silencing tumor suppressor genes. We investigated the methylation status of SOX17 and RUNX3 genes in patients with acute leukemia. Methods: In this case-control study, peripheral blood samples from 100 AML and 10...
متن کاملاپیژنتیک سرطان پستان: مقاله مروری
Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...
متن کامل